Transition to Blow-up in a Reaction-Diffusion Model with Localized Spike Solutions

نویسندگان

  • V. ROTTSCHÄFER
  • M. J. WARD
  • Vivi Rottschäfer
  • Justin C. Tzou
  • Michael J. Ward
چکیده

For certain singularly perturbed two-component reaction-diffusion (RD) systems, the bifurcation diagram of steady-state spike solutions is characterized by a saddle-node behavior in terms of some parameter β in the system. For some such systems, such as the Gray-Scott model, a spike self-replication behavior is observed as a parameter varies across the saddle-node point. We demonstrate and analyze a qualitatively new type of transition as a parameter is slowly decreased below the saddle node value, which is characterized by a finite-time blow-up of the spike solution. More specifically, we use a blend of asymptotic analysis, linear stability theory, and full numerical computations to analyze a wide variety of dynamical instabilities, and ultimately a finite-time blow-up behavior, for localized spike solutions that occur as a parameter β is slowly ramped in time below various linear stability and existence thresholds associated with steady-state spike solutions. The transition or route to an ultimate finite-time blow-up can include spike nucleation, spike annihilation, or spike amplitude oscillation, depending on the specific parameter regime. Our detailed analysis of the existence and linear stability of multi-spike patterns, through the analysis of an explicitly solvable nonlocal eigenvalue problem, provides a theoretical guide for predicting which transition will be realized. Finally, we analyze the blow-up profile for a shadow limit of the RD system. For the resulting nonlocal scalar parabolic problem, we derive an explicit formula for the blow-up rate near the parameter range where blow-up is predicted. This blow-up rate is confirmed with full numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

Classification of blow-up with nonlinear diffusion and localized reaction

We study the behaviour of nonnegative solutions of the reaction-diffusion equation    ut = (u)xx + a(x)up in R× (0, T ), u(x, 0) = u0(x) in R. The model contains a porous medium diffusion term with exponent m > 1, and a localized reaction a(x)up where p > 0 and a(x) ≥ 0 is a compactly supported function. We investigate the existence and behaviour of the solutions of this problem in dependenc...

متن کامل

Blow-up profiles of solutions for the exponential reaction-diffusion equation

We consider the blow-up of solutions for a semilinear reaction diffusion equation with exponential reaction term. It is know that certain solutions that can be continued beyond the blow-up time possess a nonconstant selfsimilar blow-up profile. Our aim is to find the final time blow-up profile for such solutions. The proof is based on general ideas using semigroup estimates. The same approach w...

متن کامل

Global and blow-up solutions for a mutualistic model

We study the global and blow-up solutions for a strong degenerate reaction–diffusion system modeling the interactions of two biological species. The local existence and uniqueness of a classical solution are established. We further give the critical exponent for reaction and absorption terms for the existence of global and blow-up solutions. We show that the solution may blow up if the intraspe...

متن کامل

Some comments concerning the blow-up of solutions of the exponential reaction-diffusion equation

The aim of this paper is to refine some results concerning the blow-up of solutions of the exponential reaction-diffusion equation. We consider solutions that blow-up in finite time, but continue to exist as weak solutions beyond the blow-up time. The main result is that these solutions become regular immediately after the blow-up time. This result improves on that of Fila, Matano and Polácik, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016